Python机器学习 rb mobi 在线 下载 lit txt 网盘 pdf

Python机器学习电子书下载地址
内容简介:
随着计算能力的快速增长,大量任务都可在台式机上完成;在这样的背景下,机器学习应运而生,成为当今炙手可热的话题。但初出茅庐的新手常对机器学习感到十分畏惧;为给这些新手扫清障碍,《Python机器学习》采用循序渐进的方式,先讲解底层技术,然后引导读者学习更高级的机器学习技巧。
本书首先介绍Python机器学习的一些基本库,包括NumPy、Pandas和matplotlib。一旦牢固地掌握了基础知识,即可开始基于Python和Scikit-learn库进行机器学习,深入了解各种机器学习算法(如回归、聚类和分类)的底层工作原理。本书专门用一章的篇幅讲解如何使用Azure Machine Learning Studio进行机器学习;利用该平台,开发人员不必编写代码即可开始构建机器学习模型。本书最后讨论如何部署供客户端应用程序使用的已构建模型。
《Python机器学习》面向机器学习新手,主要内容如下:
● Python机器学习的一些基本库,包括NumPy、Pandas和matplotlib库
● 常见的机器学习算法,包括回归、聚类、分类和异常检测
● 使用Python和Scikit-learn库进行机器学习
● 将机器学习模型部署为Web服务
● 使用Microsoft Azure Machine Learning Studio进行机器学习
● 演习机器学习模型构建方案的实例
书籍目录:
第1章 机器学习简介 1
1.1 什么是机器学习? 2
1.1.1 在本书中机器学习将解决什么问题? 3
1.1.2 机器学习算法的类型 4
1.2 可得到的工具 7
1.2.1 获取Anaconda 8
1.2.2 安装Anaconda 8
1.3 本章小结 17
第2章 使用NumPy扩展Python 19
2.1 NumPy是什么? 19
2.2 创建NumPy数组 20
2.3 数组索引 22
2.3.1 布尔索引 22
2.3.2 切片数组 23
2.3.3 NumPy切片是一个引用 25
2.4 重塑数组 26
2.5 数组数学 27
2.5.1 点积 29
2.5.2 矩阵 30
2.5.3 累积和 31
2.5.4 NumPy排序 32
2.6 数组赋值 34
2.6.1 通过引用复制 34
2.6.2 按视图复制(浅复制) 35
2.6.3 按值复制(深度复制) 37
2.7 本章小结 37
第3章 使用Pandas处理表格数据 39
3.1 Pandas是什么? 39
3.2 Pandas Series 40
3.2.1 使用指定索引创建Series 41
3.2.2 访问Series中的元素 41
3.2.3 指定Datetime范围作为Series的索引 42
3.2.4 日期范围 43
3.3 Pandas DataFrame 44
3.3.1 创建DataFrame 45
3.3.2 在DataFrame中指定索引 46
3.3.3 生成DataFrame的描述性统计信息 47
3.3.4 从DataFrame中提取 48
3.3.5 选择DataFrame中的单个单元格 54
3.3.6 基于单元格值进行选择 54
3.3.7 转置DataFrame 54
3.3.8 检查结果是DataFrame还是Series 55
3.3.9 在DataFrame中排序数据 55
3.3.10 将函数应用于DataFrame 57
3.3.11 在DataFrame中添加和删除行和列 60
3.3.12 生成交叉表 63
3.4 本章小结 64
第4章 使用matplotlib显示数据 67
4.1 什么是matplotlib? 67
4.2 绘制折线图 67
4.2.1 添加标题和标签 69
4.2.2 样式 69
4.2.3 在同一图表中绘制多条线 71
4.2.4 添加图例 72
4.3 绘制柱状图 73
4.3.1 在图表中添加另一个柱状图 74
4.3.2 更改刻度标签 76
4.4 绘制饼图 77
4.4.1 分解各部分 79
4.4.2 显示自定义颜色 79
4.4.3 旋转饼状图 80
4.4.4 显示图例 81
4.4.5 保存图表 83
4.5 绘制散点图 83
4.5.1 合并图形 84
4.5.2 子图 85
4.6 使用Seaborn绘图 86
4.6.1 显示分类图 87
4.6.2 显示lmplot 89
4.6.3 显示swarmplot 90
4.7 本章小结 92
第5章 使用Scikit-learn开始机器学习 93
5.1 Scikit-learn简介 93
5.2 获取数据集 93
5.2.1 使用Scikit-learn数据集 94
5.2.2 使用Kaggle数据集 97
5.2.3 使用UCI机器学习存储库 97
5.2.4 生成自己的数据集 97
5.3 Scikit-learn入门 100
5.3.1 使用LinearRegression类对模型进行拟合 101
5.3.2 进行预测 101
5.3.3 绘制线性回归线 102
5.3.4 得到线性回归线的斜率和截距 103
5.3.5 通过计算残差平方和检验模型的性能 104
5.3.6 使用测试数据集评估模型 105
5.3.7 持久化模型 106
5.4 数据清理 108
5.4.1 使用NaN清理行 108
5.4.2 删除重复的行 110
5.4.3 规范化列 112
5.4.4 去除异常值 113
5.5 本章小结 117
第6章 有监督的学习——线性回归 119
6.1 线性回归的类型 119
6.2 线性回归 120
6.2.1 使用Boston数据集 120
6.2.2 数据清理 125
6.2.3 特征选择 126
6.2.4 多元回归 129
6.2.5 训练模型 131
6.2.6 获得截距和系数 133
6.2.7 绘制三维超平面 134
6.3 多项式回归 136
6.3.1 多项式回归公式 138
6.3.2 Scikit-learn中的多项式回归 138
6.3.3 理解偏差和方差 142
6.3.4 对Boston数据集使用多项式多元回归 145
6.3.5 绘制三维超平面 146
6.4 本章小结 149
第7章 有监督的学习——使用逻辑回归进行分类 151
7.1 什么是逻辑回归? 151
7.1.1 理解概率 153
7.1.2 logit函数 153
7.1.3 sigmoid曲线 155
7.2 使用威斯康星乳腺癌诊断数据集 156
7.2.1 检查特征之间的关系 157
7.2.2 使用一个特征训练 161
7.2.3 使用所有特性训练模型 164
7.3 本章小结 174
第8章 有监督的学习——使用支持向量机分类 175
8.1 什么是支持向量机? 175
8.1.1 最大的可分性 176
8.1.2 支持向量 177
8.1.3 超平面的公式 178
8.1.4 为SVM使用Scikit-learn 179
8.1.5 绘制超平面和边距 182
8.1.6 进行预测 183
8.2 内核的技巧 184
8.2.1 添加第三个维度 185
8.2.2 绘制三维超平面 187
8.3 内核的类型 189
8.3.1 C 193
8.3.2 径向基函数(RBF)内核 195
8.3.3 gamma 196
8.3.4 多项式内核 198
8.4 使用SVM解决实际问题 199
8.5 本章小结 202
第9章 有监督的学习——使用k-近邻(kNN)分类 203
9.1 k-近邻是什么? 203
9.1.1 用Python实现kNN 204
9.1.2 为kNN使用Scikit-learn的KNeighborsClassifier类 209
9.2 本章小结 218
第10章 无监督学习——使用k-means聚类 219
10.1 什么是无监督学习? 219
10.1.1 使用k-means的无监督学习 220
10.1.2 k-means中的聚类是如何工作的 220
10.1.3 在Python中实现k-means 223
10.1.4 在Scikit-learn中使用k-means 228
10.1.5 利用Silhouette系数评价聚类的大小 230
10.2 使用k-means解决现实问题 234
10.2.1 导入数据 234
10.2.2 清理数据 235
10.2.3 绘制散点图 236
10.2.4 使用k-means聚类 236
10.2.5 寻找最优尺寸类 238
10.3 本章小结 239
第11章 使用 Azure Machine Learning Studio 241
11.1 什么是Microsoft Azure Machine Learning Studio? 241
11.1.1 以泰坦尼克号实验为例 241
11.1.2 使用Microsoft Azure Machine Learning Studio 243
11.1.3 训练模型 254
11.1.4 将学习模型作为Web服务发布 258
11.2 本章小结 263
第12章 部署机器学习模型 265
12.1 部署ML 265
12.2 案例研究 266
12.2.1 加载数据 267
12.2.2 清理数据 267
12.2.3 检查特征之间的相关性 269
12.2.4 绘制特征之间的相关性 270
12.2.5 评估算法 273
12.2.6 训练并保存模型 275
12.3 部署模型 277
12.4 创建客户机应用程序来使用模型 279
12.5 本章小结 281
作者介绍:
Wei-Meng Lee是一名技术专家,也是Developer Learning Solutions公司(http://www.learn2development.net)的创始人,该公司专门从事最新技术的实践培训。
Wei-Meng具有多年的培训经验,他的培训课程特别强调“边做边学”。他动手学习编程的方法使理解这个主题比仅阅读书籍、教程和文档容易得多。
Wei-Meng这个名字经常出现在网上和印刷出版物,如DevX.com、MobiForge.com和CoDe杂志。
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
随着计算能力的快速增长,大量任务都可在台式机上完成;在这样的背景下,机器学习应运而生,成为当今炙手可热的话题。但初出茅庐的新手常对机器学习感到十分畏惧;为给这些新手扫清障碍,《Python机器学习》采用循序渐进的方式,先讲解底层技术,然后引导读者学习更高级的机器学习技巧。
本书首先介绍Python机器学习的一些基本库,包括NumPy、Pandas和matplotlib。一旦牢固地掌握了基础知识,即可开始基于Python和Scikit-learn库进行机器学习,深入了解各种机器学习算法(如回归、聚类和分类)的底层工作原理。本书专门用一章的篇幅讲解如何使用Azure Machine Learning Studio进行机器学习;利用该平台,开发人员不必编写代码即可开始构建机器学习模型。本书最后讨论如何部署供客户端应用程序使用的已构建模型。
《Python机器学习》面向机器学习新手,主要内容如下:
● Python机器学习的一些基本库,包括NumPy、Pandas和matplotlib库
● 常见的机器学习算法,包括回归、聚类、分类和异常检测
● 使用Python和Scikit-learn库进行机器学习
● 将机器学习模型部署为Web服务
● 使用Microsoft Azure Machine Learning Studio进行机器学习
● 演习机器学习模型构建方案的实例
网站评分
书籍多样性:9分
书籍信息完全性:7分
网站更新速度:5分
使用便利性:4分
书籍清晰度:5分
书籍格式兼容性:9分
是否包含广告:3分
加载速度:6分
安全性:7分
稳定性:5分
搜索功能:6分
下载便捷性:4分
下载点评
- 内容齐全(267+)
- 差评少(92+)
- 五星好评(518+)
- 傻瓜式服务(383+)
- 字体合适(557+)
- txt(122+)
- 藏书馆(302+)
- 一般般(327+)
- 赚了(118+)
- 无广告(361+)
- 已买(619+)
下载评价
- 网友 通***蕊:
五颗星、五颗星,大赞还觉得不错!~~
- 网友 石***烟:
还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
- 网友 戈***玉:
特别棒
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
- 网友 孔***旋:
很好。顶一个希望越来越好,一直支持。
- 网友 曾***玉:
直接选择epub/azw3/mobi就可以了,然后导入微信读书,体验百分百!!!
- 网友 印***文:
我很喜欢这种风格样式。
- 网友 邱***洋:
不错,支持的格式很多
- 网友 家***丝:
好6666666
- 网友 居***南:
请问,能在线转换格式吗?
喜欢"Python机器学习"的人也看了
自有库存 保证正版!!做好强军实践中政治工作:学习贯彻全军政治工作会议精神的探索与思考 rb mobi 在线 下载 lit txt 网盘 pdf
宋太祖赵匡胤全传 郭兆祥 著 企业管理出版社【正版书】 rb mobi 在线 下载 lit txt 网盘 pdf
很久很久的老偏方 rb mobi 在线 下载 lit txt 网盘 pdf
家庭、社会与购买力 崔健伟 著 山东人民出版社,【正版可开发票】 rb mobi 在线 下载 lit txt 网盘 pdf
带你突破商务英语口语 rb mobi 在线 下载 lit txt 网盘 pdf
美国税务实用指南 (美)杨心传 著 rb mobi 在线 下载 lit txt 网盘 pdf
劳动合同法风险规避指南 rb mobi 在线 下载 lit txt 网盘 pdf
9787565907586 rb mobi 在线 下载 lit txt 网盘 pdf
建筑工程质量管理与质量控制 程桢 编 中国质检出版社,中国标准出版社,【正版可开发票】 rb mobi 在线 下载 lit txt 网盘 pdf
正版韩语发音入门王自学入门教材从零开始学韩语零基础韩语自学口语发音单词语法初级韩国语韩语入门韩语自学书谐音韩国旅游书籍 rb mobi 在线 下载 lit txt 网盘 pdf
- 9787513545914 rb mobi 在线 下载 lit txt 网盘 pdf
- 注册电气工程师执业资格考试公共基础考试复习教程(第2版) rb mobi 在线 下载 lit txt 网盘 pdf
- 园林制图+园林制图习题集 中国建筑工业出版社 rb mobi 在线 下载 lit txt 网盘 pdf
- 2册图解Mastercam 2017车铣复合编程入门与精通+数控车铣复合加工 车铣复合编程CAD技巧教程书籍两轴三轴四轴编程操作加工程序设计 rb mobi 在线 下载 lit txt 网盘 pdf
- 双响炮2 rb mobi 在线 下载 lit txt 网盘 pdf
- 最新英语专业考研名校真题集--英美文学(新修订版)/北京环球时代学校英语专业考研点睛 rb mobi 在线 下载 lit txt 网盘 pdf
- 酒店英语(新编21世纪高等职业教育精品教材·旅游大类;浙江省普通高校“十三五”新形态教材) rb mobi 在线 下载 lit txt 网盘 pdf
- 萌宝爸爸讲故事·爸爸说太阳能让我们长大:男孩女孩故事 rb mobi 在线 下载 lit txt 网盘 pdf
- 全新正版图书 新英汉能大词典-(版)潘熙祥华语教学出版社9787513805179人天图书专营店 rb mobi 在线 下载 lit txt 网盘 pdf
- 宠物摄影技术 rb mobi 在线 下载 lit txt 网盘 pdf
书籍真实打分
故事情节:3分
人物塑造:7分
主题深度:5分
文字风格:5分
语言运用:6分
文笔流畅:5分
思想传递:8分
知识深度:4分
知识广度:5分
实用性:7分
章节划分:5分
结构布局:8分
新颖与独特:3分
情感共鸣:8分
引人入胜:6分
现实相关:4分
沉浸感:5分
事实准确性:7分
文化贡献:6分